Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrea Schuy and Uwe Ruschewitz*

Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

Correspondence e-mail:
uwe.ruschewitz@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.031$
$w R$ factor $=0.074$
Data-to-parameter ratio $=22.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[μ_{4}-isonicotinato- μ_{3}-nitrato-barium(II)]

The title compound, $\left[\mathrm{Ba}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\left(\mathrm{NO}_{3}\right)\right]_{n}$, was formed by the hydrothermal reaction of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$, isonicotinamide and KOH with release of ammonia. The Ba ion is ten-coordinated by nine O atoms and one N atom. Five of these O atoms derive from one monodentate and two bidentate nitrate anions. The other O atoms derive from one bidentate and two monodentate carboxylate groups of the isonicotinate anions. The coordination is completed by an N atom of the isonicotinate anion. These units are connected to form a three-dimensional framework structure.

Comment

Recently, we have found that coordination polymers composed of linear and trigonal-planar anions show a high tendency to crystallize in non-centrosymmetric space groups (Schuy et al., 2005). During our systematic search to find more examples of this, colourless crystals of the title compound, (I), were synthesized by hydrothermal methods.

The crystal structure of (I) contains barium ions coordinated by nine O atoms from three nitrate anions $[\mathrm{Ba}-\mathrm{O}=$ 2.881 (3) -2.985 (4) \AA] and three isonicotinate anions [$\mathrm{Ba}-\mathrm{O}$ $=2.682$ (3) -2.964 (3) \AA] and by one N atom from a fourth isonicotinate anion $[\mathrm{Ba}-\mathrm{N}=2.964$ (4) \AA; Fig. 1]. Each nitrate anion connects three barium ions, two in a bidentate chelating mode and one in a monodentate mode. Each isonicotinate anion connects four barium ions, three in a bridging-chelating tetradentate mode and the fourth barium ion via the N atom. This leads to a complex three-dimensional structure of the anhydrous title compound. BaO_{9} polyhedra are connected in layers parallel to the (110) plane. Adjacent layers are connected by the isonicotinate anions, forming a threedimensional network (Fig. 2). The $\mathrm{Ba}-\mathrm{O}$ and $\mathrm{Ba}-\mathrm{N}$

Received 31 March 2006
Accepted 4 April 2006
distances are within the ranges of literature values (e.g. Schuy et al., 2005), as are the intramolecular bonds of the anions (Cai et al., 2003).

Experimental

Isonicotinamide ($0.25 \mathrm{~g}, 2 \mathrm{mmol}$), $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(0.66 \mathrm{~g}, 2.5 \mathrm{mmol}), \mathrm{KOH}$ ($0.11 \mathrm{~g}, 2 \mathrm{mmol}$) and deionized water (5 ml) were placed in a Teflonlined autoclave and heated at 423 K for 50 h . The autoclave was then cooled to room temperature at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$. A clear solution was obtained, from which barium nitrate crystallized. These crystals were filtered off. Colourless column-shaped crystals of (I) crystallized from the filtrate after 2 d . Elemental analysis calculated for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BaN}_{2} \mathrm{O}_{5}$: C 22.42 , H $1.25, \mathrm{~N} 8.71 \%$; found: C $22.01, \mathrm{H} 0.88, \mathrm{~N} 8.69 \%$. No yield was determined.

Crystal data

$\left[\mathrm{Ba}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\left(\mathrm{NO}_{3}\right)\right]$
$M_{r}=321.45$
Triclinic, $P \overline{1}$
$a=5.6416$ (10) Å
$b=8.0487$ (15) \AA
$c=9.7998$ (18) A
$\alpha=93.525(15)^{\circ}$
$\beta=106.058$ (14) ${ }^{\circ}$
$\gamma=96.254(15)^{\circ}$

Data collection

Stoe IPDS-II diffractometer ω and φ scans
Absorption correction: numerical
[X-RED32 (Stoe \& Cie, 2001)
after optimizing the crystal shape
(X-SHAPE; Stoe \& Cie, 1999)]
$T_{\text {min }}=0.367, T_{\text {max }}=0.670$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.074$
$S=1.12$
2928 reflections
129 parameters
H -atom parameters constrained
$V=423.12(13) \AA^{3}$
$Z=2$
$D_{x}=2.523 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=4.69 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Column, colourless
$0.7 \times 0.3 \times 0.2 \mathrm{~mm}$

6949 measured reflections 2928 independent reflections 2604 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.040$ $\theta_{\text {max }}=32.2^{\circ}$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0237 P)^{2}\right.} \\
&+1.55 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.81 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.34 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.080 (3)

Table 1
Selected bond lengths (\AA).

$\mathrm{Ba} 1-\mathrm{O} 11^{\mathrm{i}}$	$2.682(3)$	$\mathrm{Ba} 1-\mathrm{O} 22$	$2.954(4)$
$\mathrm{Ba} 1-\mathrm{O} 12$	$2.724(3)$	$\mathrm{Ba} 1-\mathrm{O} 11^{\mathrm{ii}}$	$2.964(3)$
$\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{ii}}$	$2.838(3)$	$\mathrm{Ba} 1-\mathrm{N} 1^{\text {iv }}$	$2.964(4)$
$\mathrm{Ba} 1-\mathrm{O} 21^{\mathrm{iii}}$	$2.881(3)$	$\mathrm{Ba} 1-\mathrm{O} 23^{\mathrm{i}}$	$2.978(3)$
$\mathrm{Ba} 1-\mathrm{O} 23$	$2.938(3)$	$\mathrm{Ba} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.985(4)$

Symmetry codes: (i) $x+1, y, z$; (ii) $-x,-y,-z$; (iii) $-x,-y+1,-z$; (iv)
$x+1, y, z+1$.
H atoms were placed in idealized positions and and constrained to ride on their parent atoms, with a $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$. A common $U_{\text {iso }}(\mathrm{H})$ value was refined for all four H atoms. The highest peak is located $1.07 \AA$ from atom Ba1 and the deepest hole $0.74 \AA$ from atom Ba1.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine

Figure 1
A view of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H -atom radii are arbitrary. [Symmetry codes: (i) $x+1, y, z$; (ii) $-x,-y,-z$; (iii) $-x,-y+1,-z$; (iv) $x+1, y, z+1$.]

Figure 2
View of the crystal structure of (I), projected along [010]. H atoms have been omitted for clarity.
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXL97.

We thank Dr Ingo Pantenburg for the data collection.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Brandenburg, K. (2004). DIAMOND. Release 3.0a. Crystal Impact GbR, Bonn, Germany.
Cai, L.-Z., Wang, M.-S., Zhou, G.-W., Guo, G.-C., Mao, J.-G. \& Huang, J.-S. (2003). Acta Cryst. E59, m249-m251.

Schuy, A., Billetter, H., Hohn, F., Pantenburg, I. \& Ruschewitz, U. (2005). Z. Kristallogr. 220, 250-258.
Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.
Stoe \& Cie (1999). X-SHAPE. Version 1.06. Stoe \& Cie, Darmstadt, Germany. Stoe \& Cie (2001). X-AREA (MainMenu Version 1.15) and X-RED32 (Version 1.22). Stoe \& Cie GmbH, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

